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Abstract. Mass-Spring Models (MSM) are wildly used to simulate the mechanical behavior

of deformable bodies because of their simplicity and computational e�ciency. However, the major

di�culty in using MSMs lies on the spring sti�ness estimation since the parameters are typically

determined through trial-and-error. Only a few contributions are made to establish the analytical

relation between the spring parameters and elastic material properties. In this paper, a novel

MSM with three additional nodes (MSMTN) for the membrane is presented based on continuum

mechanics of deformable objects. The spring parameters of the MSMTN in triangle elements have

analytical expressions suited to arbitrary isotropic material parameters and element shapes without

any limitation. The proposed MSMTN can achieve same element sti�ness matrix with the one in

�nite element model (FEM) for triangle membrane element, thereby the MSMTN can reach the

similar computational accuracy with FEM. This feature of MSMTN makes up the weakness in

computation accuracy of classical MSMs e�ectively. Numerical simulations of tensile membranes

show that the MSMTN and improved deformation algorithm have satisfactory accuracy and good

generality.

Key words. Mass-Spring Model, �nite element model, spring parameter, membrane, addi-

tional node..

1Acknowledgement - This work was �nancially supported by the Science and Technology Fund
of Jiangxi Provincial Education Department of China (Grant No: GJJ151143) and National Science
Foundation of China (Grant No: 51108227, 51308277)

2Workshop 1 - School of Civil Engineering and Architecture, Nanchang Institute of Technology,
Nanchang City, 330099, China

3Workshop 2 - Jiangxi Provincial Engineering Research Center of the Special Reinforcement and
Safety Monitoring Technology in Hydraulic & Civil Engineering, Nanchang Institute of Technology,
Nanchang City, 330099, China

4Workshop 3 - School of Civil Engineering and Architecture, Nanchang University, Nanchang
City, 330031, China

5Workshop 4 - Key Lab of Structures Dynamic Behavior and Control of the Ministry of Educa-
tion, Harbin Institute of Technology, Harbin, 150090, China

6Corresponding author: Chun Zhang

http://journal.it.cas.cz



730
KAI LIU , CHENG HONG, CHUN ZHANG , MING-MING JIA , XIAOLONG LI, CAO

LUO,XIAOMEI XU

1. Introduction

Fast and accurate deformation simulation of the �exible membrane is an im-
portant task in di�erent �elds such as computer graphics and membrane structural
analysis. The Finite Element Method (FEM) and the Mass-Spring Model (MSM)
are two main approaches used to describe the mechanical behavior of �exible mem-
brane. Based on the continuum constitutive relationships of elastic bodies, FEM
has attractive computational e�ciency for linear problems, but the computation
cost increases considerably when nonlinear FEM is used to solve the problems with
large deformation or sophisticate material models. Comparing with FEM, MSMs
are essentially discrete models which consist of discrete springs and lumped masses
with di�erent mesh topology. The deformation of the �exible body is described as
the position changes of mass points, and the motion equations of each particle are
formulated by Newtonian second law. MSMs are usually believed to be simple and
e�cient, but not as accurate as FEM. The drawback of MSM in computational ac-
curacy comes mainly from that the formulas of spring parameters do not include the
elastic material constitutive laws.

Determination of the parameters like spring sti�ness in MSMs still remains a
great challenge [1]. The derivation methods of parameters can be classi�ed as data-
driven methods and analytical derivation methods loosely. Data-driven approaches
can obtain the optimized spring sti�ness or mesh topology by �tting the deforma-
tion of MSMs to the reference data. However, the parameters optimization usually
requires expensive computation, and will be repeated when any alteration about
material, mesh or the optimal algorithm is made. In contrast to the data-driven
methods, analytical methods try to derive analytical expressions of the parameters
in MSMs by using continuum mechanics and �nite element theory. The natural
discrete feature of MSMs makes the analytical derivation is di�cult, so there are
only a few contributions in this research area. Gelder [2] concluded that triangu-
lated `spring mesh model cannot exactly simulate the membrane model, in sense of
having the same equilibria.', and then, an approximate expression was suggested.

In this paper, a new MSM with three additional nodes (MSMTN) is proposed
to simulate the thin membrane. MSMTN has the same equivalent element sti�ness
matrix with linear FEM and the spring coe�cients in MSMTN also have the ex-
plicit analytical expressions. Moreover, the spring coe�cient expressions are more
concise and suitable for the arbitrary triangle shape and isotropic materials without
any limitation. The corresponding space deformation algorithm for the MSMTN is
improved to compute the displacement of additional nodes. Numerical cases show
that the MSMTN and improved deformation algorithm have satisfactory accuracy
and good generality.

2. MSMTN and identi�cation of spring parameters

In �nite element methods, the element sti�ness matrix can represent the physical
relationship between nodal deformations and loads, and is determined by element
shape and material properties. Here, we will determine the spring parameters of
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MSMTN by comparing with FEM for isotropic membrane. Three additional springs
and additional nodes are introduced as independent controlled parameters, so that
the sti�ness matrix of the MSM is equal to the sti�ness matrix of the FEM. Consider
the elastic membranes as a uniform, orthotropic and linear elastic material, and the
assumption of plane stress is used in this study.

2.1. Sti�ness Matrix of a Triangle element in FEM

3-node Triangle element is a common 2D element to simulate the thin membrane.
As a constant strain and stress element, the sti�ness matrix of triangle element [9]
can be expressed analytically as

Ke
fem =

 Ki,i Ki,j Ki,k

Kj,i Kj,j Kj,k

Kk,i Kk,j Kk,k

 (1)

Ke
msmd

e
msm =

[
Ke
mm Ke

ms

Ke
sm Ke

ss

]{
dem
des

}
=

{
F em
F es

}
(2)

Fig. 1. Triangle element in (a) FEM (b) MSMTN

2.2. Sti�ness Matrix of a Triangle element in MSMTN

The MSM triangle element with three additional nodes is illustrated in Fig (1b).
The vertexes Pi, Pj and Pk are taken as master nodes, and the additional nodes
Pc1 , Pc2 and Pc3 are de�ned as the slave nodes. Three vertexes and the center
of gravity of the triangle can form three small triangles, and the initial location of
additional nodes are set at the centers of the gravity of three small triangles, so the
initial coordinates of additional nodes are

Pc1

(
4+α

9 a, β9 a
)

,

Pc2

(
4+4α

9 a, 4β
9 a
)

and
Pc3

(
1+4α

9 a, 4β
9 a
)
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Fig. 2. Single triangle element. (a)(b)

. The sti�ness parameters of the springs connected with master nodes are k1 , k2

and k3 , and kc1 is de�ned as the sti�ness of the spring connected master nodes to
additional node Pc1 . The spring sti�ness kc2 and kc3 are de�ned similarly.

In proposed MSMTN, three assumption about additional node are adopted (i) the
mass and damp of the additional nodes are neglected (ii) the additional nodes do not
undertake the external loading directly (iii) the additional node is always located in
the plane of the triangle element. Here, only the displacements of the master nodes in
MSMTN are required to accord with the deformation of actual structures. The main
function of the additional nodes and springs is adjusting the relationship between the
force and deformation to simulate actual membrane. Therefore, MSMTN provide
three extra independent variables kc1, kc2 and kc3, which make it possible to match
the sti�ness matrix of MSM with the corresponding matrix of FEM accurately.

where the subscripts m and s denote the degree of freedoms (dofs) of the master
and additional nodes, respectively. dem and des represent the displacement of the
master and additional nodes, F em and F es are the external force on the master and
additional nodes, respectively. Using the assumption (ii) about additional nodes,
the load in additional nodes F es = 0, so the relation between the external force and
the displacement of the master nodes can be obtained from Eq.(2).

F em = Ke
msmtn = (Ke

mm −Ke
ms(K

e
ss)
−1Ke

sm)dem (3)

J =
∥∥Ke

msmtn −Ke
fem

∥∥2

2
(4)

Apparently, the equivalent sti�ness matrix Ke
msmtn is the function of element

shape parameters α, β and spring parameters k1 , k2 ,k3 , kc1, kc2 = ηkc, kc3 = θkc,
where η and θ are dimensionless variables.
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2.3. Derivation of Spring Parameters in MSMTN

De�ne the Euclidean distance of the element sti�ness matrices between FEM and
MSMTN as

where Ke
msmtn is the function of α, β, k1, k2, k3, kc, η, θ, and K

e
fem is the function

of α, β,E, ν, t, where t is the thickness of thin membrane, E is the Young's modulus
and ν is the Poisson's ratio of the material. Here the objective function J is a
continuous di�erentiable function.

The objective function J has the minimum value Jmin=0 only when

Ke
msmtn = Ke

fem

. If the minimum valueJmin =0 exists, the following equations should be satis�ed

∂J/∂kl = 0, l = 1, 2, 3, c (5)

The spring parameters k1, k2 , k3 and kc can be obtained by solving the Eq.(5),
and then the corresponding results are substituted into Jmin =0, the simpli�ed equa-
tion is

J (α, β, ν, η, θ) = 0 (6)

The simpli�ed equation (6) is a quadratic equation of the variable η, so two
di�erent solutions of η can be obtained as

η =
f1(α,β,ν,θ)±

√
g(α,β,ν,θ)

f2(α,β,ν,θ) (7)

where the expressions of the function f1, f2 and g are too long to show in detail.
Because of the uniqueness of the additional spring parameter, let g (α, β, ν, θ)=0,
and then the analytical expression of θ can be deduced. Using the expressions of the
dimensionless variables η and θ , the spring parameters in MSMTN can be deduced
and simpli�ed as

k1 = 9(−12α3 + 6α4 + 12α2(−2 + β2)− 6α(−5 + 2β2) + β2(−5 + 6β2 − 9ν))k0 (8)

For equilateral triangle element (α = 1
2 ,β =

√
3

2 ) with the Poisson's ratio 1 / 3 ,
the Eqs. (8)can be simpli�ed as

k1 = k2 = k3 =
√

3
4 Et, kc1 = kc2 = kc3 = 0.

The deduced spring parameters are same completely with Lloyd's formula [3].
The solutions (8)can ensure Jmin =0, thereby the sti�ness matrix in MSMTN is

exactly the same as that in FEM. The deduced analytical expressions of the spring
parameters in MSMTN are suitable for arbitrary triangle element and materials
properties without any limitation.
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3. Deformation algorithm of the MSMTN

The deformation algorithm of the MSMTN is di�erent with classical MSMs since
the introduction of additional springs and nodes. The displacement of master nodes
and additional nodes should be calculated respectively because of di�erent charac-
teristic. According to the assumption about additional nodes in Section 2.2, the
dynamic equations about master and additional nodes in the MSMTN can be ex-
pressed respectively as

Mmmd̈m + Cmmḋm + Fspring = Fm (9)

Ksmdm +Kssds = Fs = 0 (10)

wheredm and ds are the displacement vector of all master nodes and additional
nodes respectively, Fspring is the spring force acted on the master nodes and can be
calculated by the deformation of springs in MSMTN.

3.1. Deformation of the Master Nodes

The deformation of master nodes in MSMTN can be computed by the same algo-
rithms with classical MSMs. In this paper, the time step integral method proposed
by Verlet is used to solve the Eq. (9)only for its simplicity, and it can be replaced
by other numerical integral algorithms. Using the initial value or the results of the
previous time step, new acceleration, velocity and displacement of the master nodes
at the next time step can be calculated.

3.2. Deformation of the Additional Nodes

Because an additional node only connects with three master nodes in the same
element, the deformation of additional nodes can be solved by using the Eq. (10) in
planar problems

des = (Ke
ss)
−1

(−Ke
smd

e
m) = (Ke

ss)
−1
F esm (11)

However, three additional springs located in the plane of the triangle element
cannot provide the out-of-plane sti�ness, so the rigid displacement of the triangle
element leads to a singular sti�ness matrix Ke

ss. In order to eliminate the singularity
of Ke

ss, the in-plane and out-of-plane displacement of additional nodes are calculated
separately. The in-plane component is caused by the elastic deformation of the
triangle MSM element, while the out-of-plane component of the additional nodes
∆c = {dcx, dcy, dcz}T is decided by the rigid displacement of the master nodes ∆m =

{∆i,∆j ,∆k}T :
∆c = χ ·∆m (12)

where χ = {χi, χj , χk},

χi = (nijk · njkc) S∆jkc

S∆ijk
, χj = (nijk · nkic) S∆kic

S∆ijk
, χk = (nijk · nijc) S∆ijc

S∆ijk
.
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S∆ is the area of corresponding triangle, and the unit vectors are de�ned as

nijk =
−−−→
PiPj×

−−−→
PiPk∣∣∣−−−→PiPj×
−−−→
PiPk

∣∣∣ , njkc =
−−−→
PjPk×

−−−→
PjPc∣∣∣−−−→PjPk×
−−−→
PjPc

∣∣∣ , nkic =
−−−→
PkPi×

−−−→
PkPc∣∣∣−−−→PkPi×
−−−→
PkPc

∣∣∣ , nijc =
−−−→
PiPj×

−−−→
PiPc∣∣∣−−−→PiPj×
−−−→
PiPc

∣∣∣ .
Then, we can compute the complete displacement of additional nodes by solving

the simultaneous equations consisted of two equations in Eq. (11)and one equation
in Eq.(12).

The deformation algorithm of MSMTN has more computational cost than clas-
sical MSMs because of the displacement calculation of the additional nodes. It is
lucky that the displacement of each additional node can be computed individually
by solving the equations with the rank 3. Furthermore, ideal calculation precision
of MSMTN allows lower mesh resolutions which also contribute to reduce the com-
putational cost. Thereby, high computational e�ciency still can be maintained in
new MSMTN in dynamical simulation.

4. Experiments and resultsw

In this section, two numerical examples about tensile membranes are presented
to display the performance of MSMTN. Without loss of generality, dimensionless
variables are used in the cases.

4.1. Single Triangle Element

In classical MSMs, negative sti�ness springs are rejected due to the potential
di�culty in calculation. However, the parameters of both structural and additional
springs are possible to be negative in MSMTN, so it is important to ensure the
correctness of the deformation calculation in the MSMTN with negative sti�ness
springs.

In this case, two di�erent triangle membrane elements with the thickness t=0.001
are selected, as shown in Fig. (2a) and (2b), and corresponding material properties
and loads are listed in Table 1. The spring parameters in MSMTN can be calculated
by Eq.(8)according to the triangular shape and material properties, the results are
listed in Table 2.

The bottom side of triangle elements are �xed, and the di�erent tensile forces
Fx and Fy are applied to the node Pk. The displacement of node Pk obtained by
MSMTN and FEM are listed in Table 3, Table 4 and Table 5, respectively. Here, the
results of FEM are computed by ANSYS software. The results show the MSMTN
has similar computational accuracy with FEM.

Table 1. Shape parameters of triangle membrane elements, material properties and load

Element α β E ν

Fig. (2a) 0.5
√
3
/
2 100000 0.25

Fig. (2b) 0.7 0.6 100000 0.40
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Table 2. Spring parameters in MSMTN

Element k1 k2 k3 kc1 kc2

Fig. (2a) 146 146 146 -12.8 -12.8

Fig. (2b) 460 74.0 69.6 -339 168

Table 3. Displacement along y-direction (UY) of vertex Pk of the element in Fig. 2(a)

Fy 0.1 0.5 1 2 3 4

UY×10−2

(MSMTN)
0.21162 1.0583 2.1174 4.2391 6.3664 8.4999

UY×10−2

(FEM)
0.21163 1.0582 2.1163 4.2326 6.3489 8.4652

Relative error 0.00% 0.02% 0.05% 0.15% 0.28% 0.41%

Table 4. Displacement (UX and UY) of vertex Pk of the element in Fig. 2(b)

Fx = Fy 0.01 0.05 0.1 0.2

UY×10−3(MSMTN) 0.33598 1.6799 3.3594 6.7179

UY×10−3(FEM) 0.33600 1.6800 3.3600 6.7200

Relative error 0.005% 0.007% 0.016% 0.032%

UX×10−3 (MSMTN) 0.10082 0.50436 1.0094 2.0218

UX×10−3 (FEM) 0.10080 0.50400 1.0080 2.0160

Relative error -0.016% -0.071% -0.144% -0.286%

4.2. Square Membrane

A square membrane shown in Fig. (3) with dimension 1×1 and thickness 0.001
is the tested patch. The geometry is discretized with 200 elements in MSMTN.
Four sides of square membrane are all �xed, and a tensile force F = 0.1 which is
perpendicular to the plane of the membrane is applied on the central node of the
square. The material properties are set as E=80000 and ν=0.4.

Fig.4 shows the deformation pro�le of the square membrane calculated by MSMTN.
The super-elasticity (overstretch) in the zone near the concentrated load is a com-
mon problem in classical MSM, but it is observed that MSMTN can avoid this fault
e�ectively. The displacement along z-direction of the central node is 0.0619271 in
the MSMTN, and the result calculated by nonlinear FEM is 0.062164. The relative
error is only 0.38%. The results indicate the MSMTN and deformation algorithm
can solve the large deformation problems e�ciently and accurately.
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Fig. 3. Square membrane

Fig. 4. Deformation pro�le of the square membrane

5. Conclusion

The study of vibration of plates of variable thickness is very important in a
wide variety of applications in industry and engineering. In the present analysis
desired frequencies of non-homogeneous trapezoidal plate whose thickness varies
bilinearly and density varies parabolically in one direction has been studied through
the Rayleigh�Ritz technique. The results corresponding to the C-S-C-S boundary
condition are computed for some selected domain to obtain better understanding
of the methodology. E�ect of plate's parameters such as taper constants, thermal
gradient, aspect ratio and non-homogeneity constant has also been considered for
�rst two modes of vibration. The tables illustrate that the frequency parameter
increases with the increase of taper constants and frequency parameter decreases
with the increase of thermal gradient, aspect ratio and non-homogeneity constant.
Comparison of present work has been made with known results and found to be
much closed. The material should be selected such that the total cost should be
minimum and within speci�ed limits.
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Fig. 5. The convergence of relative error
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